zzwcreator
2 weeks ago
commit
2163c32f56
16 changed files with 595 additions and 0 deletions
-
52.vscode/settings.json
-
38DiDi/ques1.cpp
-
77DiDi/ques2.cpp
-
BINHuaWei/output/ques.exe
-
BINHuaWei/output/ques2.exe
-
104HuaWei/ques.cpp
-
72HuaWei/ques2.cpp
-
34LiXiang/TEST.PY
-
BINLiXiang/output/ques.exe
-
32LiXiang/ques.cpp
-
BINXiaoHongShu/output/ques.exe
-
92XiaoHongShu/ques.cpp
-
BINoutput/test copy.exe
-
BINoutput/test.exe
-
59test.cpp
-
35test.py
@ -0,0 +1,52 @@ |
|||
{ |
|||
"files.associations": { |
|||
"vector": "cpp", |
|||
"algorithm": "cpp", |
|||
"atomic": "cpp", |
|||
"bit": "cpp", |
|||
"cctype": "cpp", |
|||
"clocale": "cpp", |
|||
"cmath": "cpp", |
|||
"compare": "cpp", |
|||
"concepts": "cpp", |
|||
"cstddef": "cpp", |
|||
"cstdint": "cpp", |
|||
"cstdio": "cpp", |
|||
"cstdlib": "cpp", |
|||
"cstring": "cpp", |
|||
"ctime": "cpp", |
|||
"cwchar": "cpp", |
|||
"exception": "cpp", |
|||
"initializer_list": "cpp", |
|||
"ios": "cpp", |
|||
"iosfwd": "cpp", |
|||
"iostream": "cpp", |
|||
"istream": "cpp", |
|||
"iterator": "cpp", |
|||
"limits": "cpp", |
|||
"memory": "cpp", |
|||
"new": "cpp", |
|||
"ostream": "cpp", |
|||
"stdexcept": "cpp", |
|||
"streambuf": "cpp", |
|||
"system_error": "cpp", |
|||
"tuple": "cpp", |
|||
"type_traits": "cpp", |
|||
"typeinfo": "cpp", |
|||
"utility": "cpp", |
|||
"xfacet": "cpp", |
|||
"xiosbase": "cpp", |
|||
"xlocale": "cpp", |
|||
"xlocinfo": "cpp", |
|||
"xlocnum": "cpp", |
|||
"xmemory": "cpp", |
|||
"xstddef": "cpp", |
|||
"xstring": "cpp", |
|||
"xtr1common": "cpp", |
|||
"xutility": "cpp", |
|||
"queue": "cpp", |
|||
"numeric": "cpp", |
|||
"unordered_set": "cpp", |
|||
"xhash": "cpp" |
|||
} |
|||
} |
@ -0,0 +1,38 @@ |
|||
/*
|
|||
从数组中选择尽可能多的元素,只能连续选择,使得相加小于m,求最多可以选择几个数。输入为一个个数为n的数组和一个整数,输出为最多选择元素的个数。 |
|||
*/ |
|||
#include <iostream>
|
|||
#include <vector>
|
|||
using namespace std; |
|||
int maxConsecutiveElementsUnderSum(const std::vector<int>& nums, int m) { |
|||
int n = nums.size(); |
|||
int max_count = 0; // 最多选择的元素个数
|
|||
int current_sum = 0; // 当前窗口内元素的和
|
|||
int left = 0; // 左指针
|
|||
// 遍历数组,用右指针表示窗口的右端
|
|||
for (int right = 0; right < n; ++right) { |
|||
current_sum += nums[right]; // 增加当前右指针对应的元素
|
|||
// 当当前窗口和大于 m 时,收缩左边界
|
|||
while (current_sum > m && left <= right) { |
|||
current_sum -= nums[left]; // 减去左指针的元素
|
|||
left++; // 左指针右移
|
|||
} |
|||
// 更新最多选择的元素个数
|
|||
max_count = std::max(max_count, right - left + 1); |
|||
} |
|||
return max_count; |
|||
} |
|||
|
|||
int main() { |
|||
vector<int> nums; |
|||
int n,m; |
|||
cin>>n>>m; |
|||
int val; |
|||
for(int i = 0; i < n; i++){ |
|||
cin >> val; |
|||
nums.push_back(val); |
|||
} |
|||
int result = maxConsecutiveElementsUnderSum(nums, m); |
|||
cout << result << endl; |
|||
return 0; |
|||
} |
@ -0,0 +1,77 @@ |
|||
/*
|
|||
小A正在玩游戏,在游戏中一共有n个不同星球,星球间共有m条双向航道,小A的任务是摧毁这些星球。若有多个星球间两两可达,则我们称它们属于同一个联盟。特别的,若一个星球与其他星球间都没有航道,则也称其为一个联盟。小A将按照星球的编号从小到大依次摧毁各个星球,当一个星球被摧毁后,与之相连的航道也将相继被摧毁,现在小A想知道在每个星球被摧毁时还剩下多少个联盟。不同星球间可能有多条航道,但每条航道连接的两个星球必然不同。上述题意可以被简化为,给定n个点,m条边的无向图,按照编号大小依次删去各个节点,请问在每个节点被删去时,还剩下多少个连通块。保证给定图无自环,但可能有重边, |
|||
|
|||
输入描述 |
|||
第一行两个正整数n,m,表示星球数与航道数。接下来m行,每行2个正整数u,v,表示两星球间有一条航道。1<n,m<5e4 |
|||
输出描述 |
|||
输出一行n个正整数,表示答案。 |
|||
|
|||
样例输入 |
|||
5 6 |
|||
1 2 |
|||
2 3 |
|||
3 1 |
|||
4 5 |
|||
5 1 |
|||
2 4 |
|||
样例输出 |
|||
1 2 1 1 0 |
|||
*/ |
|||
#include <stdio.h>
|
|||
#define MAXNUM 1000
|
|||
int Group[MAXNUM]; //记录图中节点是否被访问过
|
|||
int dist[MAXNUM][MAXNUM]; //通过邻接矩阵保存图
|
|||
void DFS(int i, int n); |
|||
int main() |
|||
{ |
|||
int n, m, p, q, k = 0; |
|||
for (int i = 0; i < MAXNUM; i++) |
|||
{ |
|||
for (int j = 0; j < MAXNUM; j++) |
|||
dist[i][j] = 0; //初始化邻接矩阵,初始值为0
|
|||
Group[i] = 0; //同上
|
|||
} |
|||
scanf("%d%d", &n, &m); //获取图的节点数n,和边数m
|
|||
for (int i = 0; i < m; i++) |
|||
{ |
|||
scanf("%d%d", &p, &q); |
|||
dist[p-1][q-1] = 1; //如果节点1和节3相连 则另dist[1][3]和dist[3][1]的值为1
|
|||
dist[q-1][p-1] = 1; |
|||
} |
|||
|
|||
for(int zz = 1; zz <= n; zz++){ |
|||
for(int j = 1; j <= n; j++){ // 删除节点zz相连的边
|
|||
p = zz; |
|||
q = j; |
|||
dist[p-1][q-1] = 0; |
|||
dist[q-1][p-1] = 0; |
|||
} |
|||
|
|||
for (int i = 0; i < MAXNUM; i++) // 清零
|
|||
{ |
|||
Group[i] = 0; |
|||
} |
|||
|
|||
for (int i = 0; i < n; i++) |
|||
{ |
|||
if (Group[i] != 1) |
|||
{ |
|||
DFS(i, n); |
|||
k++; //执行一次DFS就是k的值自增1,
|
|||
} |
|||
} |
|||
printf("%d", k - zz); // k为删除边但没有删除节点的连通数 zz表示每次删除一个节点
|
|||
k = 0; |
|||
} |
|||
return 0; |
|||
} |
|||
void DFS(int i,int n) |
|||
{ |
|||
Group[i] = 1; |
|||
for (int j = 0; j < n; j++) |
|||
{ |
|||
if (dist[i][j] == 1) |
|||
if (Group[j] != 1) |
|||
DFS(j, n); |
|||
} |
|||
} |
@ -0,0 +1,104 @@ |
|||
/*
|
|||
c++实现以下问题: |
|||
有一个 N x N 大小的迷宫。初始状态下,配送员位于迷宫的左上角,他希望前往迷宫的右下角。配送员只能沿若上下左右四个方向移动,从每个格子移动到相邻格子所需要的时间是 1个单位,他必须用最多 K 个(也可以少于 K 个)单位时间到达右下角格子。迷宫的每个格子都有辐射值,配送员必须穿着防护能力不低于相应辐射值的防护服,才能通过该格子。他希望知道,防护服的防护能力最少要达到多少,他才能顺利完成任务。注意:配送员需要通过迷宫的左上角和右下角,因此防护服的防护能力必须大于等于这两个格子的辐射值。 |
|||
解答要求: |
|||
时间限制: C/C++1000ms,其他语言:2000ms内存限制: C/C++256MB,其他语言:512MB |
|||
输入: |
|||
前两行各包含一个正整数,分别对应 N 和 K后 N 行各包含 N 整数,以空格分隔,表示地图上每个位置的辐射值,2≤N≤100。 K≥2N-2,以保证题目有解。所有辐射值都是非负整数,绝对值不超过 1e4 |
|||
输出: |
|||
一个整数,表示配送员穿着防护服的最低防护能力。 |
|||
|
|||
样例1 |
|||
输入: |
|||
2 |
|||
2 |
|||
1 3 |
|||
2 1 |
|||
输出:2 |
|||
解释:配送员可以选择通过左下角(辐射值为2)的路线,耗费2单位时间。 |
|||
|
|||
样例2 |
|||
输入: |
|||
5 |
|||
12 |
|||
0 0 0 0 0 |
|||
9 9 3 9 0 |
|||
0 0 0 0 0 |
|||
0 9 5 9 9 |
|||
0 0 0 0 0 |
|||
输出:3 |
|||
解释:最优路线:往右2格,往下2格,往左2格,往下2格,往右4格,耗费12单位时间,经过格子的最大辐射值为3。 |
|||
另外,在地图不变的情况下,如果K=16,输出为0;如果K=8,输出为5。 |
|||
|
|||
*/ |
|||
#include <iostream>
|
|||
#include <vector>
|
|||
#include <queue>
|
|||
#include <algorithm>
|
|||
using namespace std; |
|||
const int INF = 1e9; // 定义一个足够大的值表示不可达
|
|||
int N, K; |
|||
vector<vector<int>> radiation; |
|||
// 四个方向的移动
|
|||
int dx[] = {1, -1, 0, 0}; |
|||
int dy[] = {0, 0, 1, -1}; |
|||
// 判断是否可以在指定的防护能力下从 (0,0) 到 (N-1,N-1)
|
|||
bool canReach(int limit) { |
|||
if (radiation[0][0] > limit || radiation[N-1][N-1] > limit) { |
|||
return false; |
|||
} |
|||
vector<vector<bool>> visited(N, vector<bool>(N, false)); |
|||
queue<pair<int, int>> q; |
|||
q.push({0, 0}); |
|||
visited[0][0] = true; |
|||
int time = 0; |
|||
while (!q.empty()) { |
|||
int qsize = q.size(); |
|||
if (time > K) return false; // 时间超过 K
|
|||
while (qsize--) { |
|||
int x = q.front().first; |
|||
int y = q.front().second; |
|||
q.pop(); |
|||
|
|||
if (x == N-1 && y == N-1) { |
|||
return true; // 成功到达终点
|
|||
} |
|||
for (int i = 0; i < 4; ++i) { |
|||
int nx = x + dx[i]; |
|||
int ny = y + dy[i]; |
|||
if (nx >= 0 && nx < N && ny >= 0 && ny < N && !visited[nx][ny] && radiation[nx][ny] <= limit) { |
|||
visited[nx][ny] = true; |
|||
q.push({nx, ny}); |
|||
} |
|||
} |
|||
} |
|||
++time; // 每次扩展一层,时间增加
|
|||
} |
|||
return false; // 没有在 K 时间内到达终点
|
|||
} |
|||
|
|||
int main() { |
|||
// 读入 N 和 K
|
|||
cin >> N >> K; |
|||
radiation.resize(N, vector<int>(N)); |
|||
// 读入迷宫的辐射值
|
|||
for (int i = 0; i < N; ++i) { |
|||
for (int j = 0; j < N; ++j) { |
|||
cin >> radiation[i][j]; |
|||
} |
|||
} |
|||
// 二分查找防护能力
|
|||
int low = 0, high = 1e4, ans = INF; |
|||
while (low <= high) { |
|||
int mid = (low + high) / 2; |
|||
if (canReach(mid)) { |
|||
ans = mid; |
|||
high = mid - 1; |
|||
} else { |
|||
low = mid + 1; |
|||
} |
|||
} |
|||
// 输出结果
|
|||
cout << ans << endl; |
|||
return 0; |
|||
} |
@ -0,0 +1,72 @@ |
|||
#include <iostream>
|
|||
#include <vector>
|
|||
#include <algorithm>
|
|||
using namespace std; |
|||
// 日志文件结构体
|
|||
struct LogFile { |
|||
int process; // 进程序号
|
|||
int size; // 文件大小
|
|||
int downloads; // 下载次数
|
|||
}; |
|||
int main() { |
|||
int N, M, C; |
|||
cin >> N >> M >> C; |
|||
vector<vector<LogFile>> logs(N); // 每个进程的日志文件
|
|||
// 读取日志文件信息
|
|||
for (int i = 0; i < N * M; ++i) { |
|||
int process, size, downloads; |
|||
cin >> process >> size >> downloads; |
|||
logs[process].push_back({process, size, downloads}); |
|||
} |
|||
int minCapacity = 0; // 最少需要的容量
|
|||
vector<int> mustHaveDownloads; // 每个进程必须要保存的日志文件的下载次数
|
|||
vector<pair<int, int>> optionalFiles; // 额外的日志文件,保存 {文件大小,下载次数}
|
|||
// 选择每个进程的最小日志文件,并记录额外的文件
|
|||
for (int i = 0; i < N; ++i) { |
|||
// 找到当前进程中最小的文件
|
|||
int minSize = 21, minDownloads = 0; |
|||
for (const auto& log : logs[i]) { |
|||
if (log.size < minSize) { |
|||
minSize = log.size; |
|||
minDownloads = log.downloads; |
|||
} |
|||
} |
|||
// 计算最少需要的容量
|
|||
minCapacity += minSize; |
|||
mustHaveDownloads.push_back(minDownloads); |
|||
|
|||
// 记录下当前进程中非最小的日志文件,作为可选的日志文件
|
|||
for (const auto& log : logs[i]) { |
|||
if (log.size != minSize || log.downloads != minDownloads) { |
|||
optionalFiles.push_back({log.size, log.downloads}); |
|||
} |
|||
} |
|||
} |
|||
// 如果最小容量已经超出了U盘容量,返回-1
|
|||
if (minCapacity > C) { |
|||
cout << -1 << endl; |
|||
return 0; |
|||
} |
|||
// 计算每个进程必须保存的文件的下载次数之和
|
|||
int totalDownloads = 0; |
|||
for (int d : mustHaveDownloads) { |
|||
totalDownloads += d; |
|||
} |
|||
// 剩余的U盘容量
|
|||
int remainingCapacity = C - minCapacity; |
|||
// 动态规划数组,dp[j] 表示容量为 j 时的最大下载次数
|
|||
vector<int> dp(remainingCapacity + 1, 0); |
|||
// 0-1 背包:选择可选的日志文件
|
|||
for (const auto& file : optionalFiles) { |
|||
int size = file.first; |
|||
int downloads = file.second; |
|||
for (int j = remainingCapacity; j >= size; --j) { |
|||
dp[j] = max(dp[j], dp[j - size] + downloads); |
|||
} |
|||
} |
|||
// 最大的下载次数等于已选择的最小文件的下载次数 + 背包中选出的最大下载次数
|
|||
int maxDownloads = totalDownloads + dp[remainingCapacity]; |
|||
// 输出结果
|
|||
cout << maxDownloads << endl; |
|||
return 0; |
|||
} |
@ -0,0 +1,34 @@ |
|||
import math |
|||
|
|||
# 定义向量x和y |
|||
x = (0, 1, 0, 1) |
|||
y = (1, 0, 1, 0) |
|||
|
|||
# 计算余弦相似度 |
|||
def cosine(x, y): |
|||
numerator = sum([x[i] * y[i] for i in range(len(x))]) |
|||
denominator = math.sqrt(sum([x[i] ** 2 for i in range(len(x))])) * math.sqrt(sum([y[i] ** 2 for i in range(len(y))])) |
|||
return numerator / denominator |
|||
|
|||
# 计算相关系数 |
|||
def correlation(x, y): |
|||
n = len(x) |
|||
sum_x = sum(x) |
|||
sum_y = sum(y) |
|||
sum_xy = sum([x[i] * y[i] for i in range(n)]) |
|||
sum_x2 = sum([x[i] ** 2 for i in range(n)]) |
|||
sum_y2 = sum([y[i] ** 2 for i in range(n)]) |
|||
numerator = n * sum_xy - sum_x * sum_y |
|||
denominator = math.sqrt((n * sum_x2 - sum_x ** 2) * (n * sum_y2 - sum_y ** 2)) |
|||
return numerator / denominator |
|||
|
|||
# 计算Jaccard系数 |
|||
def jaccard(x, y): |
|||
intersection = sum([x[i] and y[i] for i in range(len(x))]) |
|||
union = sum([x[i] or y[i] for i in range(len(x))]) |
|||
return intersection / union |
|||
|
|||
# 输出结果 |
|||
print('余弦相似度:', cosine(x, y)) |
|||
print('相关系数:', correlation(x, y)) |
|||
print('Jaccard系数:', jaccard(x, y)) |
@ -0,0 +1,32 @@ |
|||
#include <iostream>
|
|||
#include <iomanip>
|
|||
using namespace std; |
|||
|
|||
/*杨辉三角最终显示效果是一个等腰三角形,两个最外边都是1
|
|||
杨辉三角的根本在于,每个数等于它上方两数之和 |
|||
*/ |
|||
int main(){ |
|||
int n;//变量n在此处起到了限制输出行数的作用,可优化成用户输入
|
|||
cin>>n; |
|||
int i,j,a[n][n]; |
|||
|
|||
//使第一列和对角线元素的值为1
|
|||
for (i=0;i<n;i++){ //前两行全为1,拿出来单独处理
|
|||
a[i][i]=1;//使最右侧边全为1
|
|||
a[i][0]=1;//使最左侧边全为1
|
|||
} |
|||
|
|||
//从第三行开始处理
|
|||
for (i=2;i<n;i++) //三行开始出现变化
|
|||
for (j=1;j<=i-1;j++) //j始终慢i一步
|
|||
a[i][j]=a[i-1][j-1]+a[i-1][j];//每个数等于它上方两数之和,如a32=a21+a22
|
|||
|
|||
//输出数组各元素的值
|
|||
for (i=0;i<n;i++){ //从第一行开始
|
|||
for (j=0;j<=i;j++) //利用j将每一行的数据全部输出
|
|||
cout<<a[i][j]<<" "; //在C++中,setw(int n)用来控制输出间隔,这里是指前元素末尾与后元素末尾之间有个5空格位
|
|||
cout<<endl; |
|||
} |
|||
//cout<<endl;
|
|||
return 0; |
|||
} |
@ -0,0 +1,92 @@ |
|||
/*
|
|||
小红书最近决定举办一场盛大的红蓝PK!为了公平的分出红蓝两个阵营,每个人都获得了一个数字ai代表目己的战斗力,随后,由小红书“抽奖组件”这个程序来自动划分阵营,使得红方队员的总战斗力等于蓝方的总战斗力 |
|||
然而,并不是每一局游戏都能找到这样完美的分配方案,已有的程序显然已经不够用了。让我们来新增一个总战斗力。前置程序吧,你只需要计算出每一局双方战斗力差值的最小绝对值。 |
|||
*/ |
|||
#include <iostream>
|
|||
#include <vector>
|
|||
#include <cmath>
|
|||
#include <numeric>
|
|||
using namespace std; |
|||
|
|||
int findClosestSum(vector<int>& nums, int target) { |
|||
int sum = accumulate(nums.begin(), nums.end(), 0); // 数组元素的总和
|
|||
int maxSum = min(sum, target + abs(sum - target)); // 限制最大的可能和
|
|||
vector<bool> dp(maxSum + 1, false); // dp数组,初始为 false
|
|||
dp[0] = true; // 和为 0 是可能的
|
|||
// 动态规划填充 dp 数组
|
|||
for (int num : nums) { |
|||
for (int i = maxSum; i >= num; --i) { |
|||
dp[i] = dp[i] || dp[i - num]; |
|||
} |
|||
} |
|||
// 从 dp 数组中找到最接近目标值的和
|
|||
int closest = 0; |
|||
for (int i = 0; i <= maxSum; ++i) { |
|||
if (dp[i] && abs(i - target) < abs(closest - target)) { |
|||
closest = i; |
|||
} |
|||
} |
|||
return closest; |
|||
} |
|||
|
|||
int main() { |
|||
int n; |
|||
vector<int> arr; |
|||
int val, sum = 0; |
|||
cin >> n; |
|||
for(int i = 0; i < n; i++){ |
|||
cin >> val; |
|||
sum += val; |
|||
arr.push_back(val); |
|||
} |
|||
int arv = sum / 2; |
|||
int tmp = findClosestSum(arr, arv); |
|||
cout << tmp << endl; |
|||
cout << arv - tmp + sum - tmp - arv << endl; |
|||
return 0; |
|||
} |
|||
|
|||
|
|||
#include <iostream>
|
|||
#include <vector>
|
|||
#include <cmath>
|
|||
#include <numeric>
|
|||
|
|||
using namespace std; |
|||
|
|||
int findClosestSum(vector<int>& nums, int target) { |
|||
int n = nums.size(); |
|||
int sum = accumulate(nums.begin(), nums.end(), 0); // 数组元素的总和
|
|||
|
|||
int maxSum = min(sum, target + abs(sum - target)); // 限制最大的可能和
|
|||
vector<bool> dp(maxSum + 1, false); // dp数组,初始为 false
|
|||
dp[0] = true; // 和为 0 是可能的
|
|||
|
|||
// 动态规划填充 dp 数组
|
|||
for (int num : nums) { |
|||
for (int i = maxSum; i >= num; --i) { |
|||
dp[i] = dp[i] || dp[i - num]; |
|||
} |
|||
} |
|||
|
|||
// 从 dp 数组中找到最接近目标值的和
|
|||
int closest = 0; |
|||
for (int i = 0; i <= maxSum; ++i) { |
|||
if (dp[i] && abs(i - target) < abs(closest - target)) { |
|||
closest = i; |
|||
} |
|||
} |
|||
|
|||
return closest; |
|||
} |
|||
|
|||
int main() { |
|||
vector<int> nums = {7,3,5,3}; // 输入数组
|
|||
int target = 10; // 目标值
|
|||
|
|||
int result = findClosestSum(nums, target); |
|||
|
|||
cout << result << endl; |
|||
|
|||
return 0; |
|||
} |
@ -0,0 +1,59 @@ |
|||
#include <iostream>
|
|||
#include <vector>
|
|||
#include <set>
|
|||
#include <numeric>
|
|||
#include <algorithm>
|
|||
#include <cmath>
|
|||
|
|||
using namespace std; |
|||
|
|||
// 计算一个数的质因数的最小公倍数
|
|||
long long lcm(long long a, long long b) { |
|||
return a / __gcd(a, b) * b; |
|||
} |
|||
|
|||
// 计算一个城堡的完美度
|
|||
long long calculateCastlePerfectness(const vector<pair<int, int>>& blocks) { |
|||
long long product = 1; |
|||
for (const auto& block : blocks) { |
|||
product *= pow(block.first, block.second); |
|||
} |
|||
return product; |
|||
} |
|||
|
|||
int main() { |
|||
int n; |
|||
cin >> n; |
|||
|
|||
vector<long long> perfectness(n); |
|||
vector<vector<pair<int, int>>> castles(n); |
|||
|
|||
for (int i = 0; i < n; ++i) { |
|||
int ti; |
|||
cin >> ti; |
|||
castles[i].resize(ti); |
|||
for (int j = 0; j < ti; ++j) { |
|||
int Pij, Cij; |
|||
cin >> Pij >> Cij; |
|||
castles[i][j] = {Pij, Cij}; |
|||
} |
|||
perfectness[i] = calculateCastlePerfectness(castles[i]); |
|||
} |
|||
|
|||
// 计算总完美度
|
|||
set<long long> uniquePerfectness; |
|||
for (int i = 0; i < n; ++i) { |
|||
long long currentLcm = 1; |
|||
for (int j = 0; j < n; ++j) { |
|||
if (j != i) { |
|||
currentLcm = lcm(currentLcm, perfectness[j]); |
|||
} |
|||
} |
|||
uniquePerfectness.insert(currentLcm); |
|||
} |
|||
|
|||
// 输出不同的总完美度的种数
|
|||
cout << uniquePerfectness.size() << endl; |
|||
|
|||
return 0; |
|||
} |
@ -0,0 +1,35 @@ |
|||
def outer(fun): |
|||
def wrapper(s): |
|||
# 获取字符串的前三个字符 |
|||
first_three = s[1:4] |
|||
#倒序前三个字符 |
|||
reversed_three = first_three[::-1] |
|||
# 返回拼接后的字符串 |
|||
return first_three + reversed_three |
|||
return wrapper |
|||
@outer |
|||
def fun(s): |
|||
return s |
|||
|
|||
|
|||
str = input() |
|||
print(fun(str)) |
|||
|
|||
|
|||
# def process_list(li): |
|||
# li[:] = li[:6] |
|||
# li.sort(reverse=True) |
|||
# l1 = li[1::2] |
|||
# l2 = li[0::2] |
|||
# l2.reverse() |
|||
# li[:]= l2 + l1 |
|||
# return li |
|||
|
|||
# # str="[2,1,6,4,5,3,7,8]" |
|||
# str=input() |
|||
# str=str[1:-1] |
|||
|
|||
# after5 = str.split(',') |
|||
# res = process_list(after5) |
|||
# res2 = [int(i) for i in res] |
|||
# print(res2) |
Write
Preview
Loading…
Cancel
Save
Reference in new issue